Technical data sheet Nylon

Chemical Name Polyamide Description Used by many manufacturers worldwide, Nylon is well-known for its impressive durability, high strengthto-weight ratio, flexibility, low friction, and corrosion resistance. Seamless 3D printing experience due to the reduced humidity absorption when compared to other Nylon filaments. Key features Industrial-grade impact and abrasion resistance, durable, high strength-to-weight ratio, low friction coefficient, and good corrosion resistance to alkalis and organic chemicals. **Applications** Functional prototyping, tooling and industrial modeling. Non suitable for Food contact and in-vivo applications. Filament specifications Value Method 2.85±0.05 mm Diameter Max roundness deviation 0.05 mm Net filament weight 750 g Color Color information Color code

Nylon Transparent Nylon Black

RAL 9011

Mechanical properties (*)	Injectio	n mole	ding	3D printing	
	Typical va	alue	Test method	Typical value	Test method
Tensile modulus	-		-	580 MPa	ISO 527 (1 mm/min)
Tensile stress at yield	-		-	28 MPa	ISO 527 (50 mm/min)
Tensile stress at break	-		-	34 MPa	ISO 527 (50 mm/min)
Elongation at yield	-		-	20 %	ISO 527 (50 mm/min)
Elongation at break	-		-	210 %	ISO 527 (50 mm/min)
Flexural strength	-		-	-	-
Flexural modulus	-		-	-	-
Izod impact strength, notched (at 23°C)	-		-	-	-
Charpy impact strength (at 23°C)	-		-	-	-
Hardness	-		-	-	-
Thermal properties		Турі	cal value	Test metho	od .
Melt mass-flow rate (MFR)		-		-	
Heat deflection (HDT) at 0.455 MPa		-		-	
Heat deflection (HDT) at 1.82 MPa		-		-	
Glass transition		50 °C		-	
Coefficient of thermal expansion (flow)		-		-	
Coefficient of thermal expansion (xflow)		-		-	
Melting temperature		185 -	195 °C	ISO 11357 (20 °C/min)	
Thermal shrinkage		12 ±	2 %	DIN 53866 (1	00 °C, 30 min)
Other properties		Турі	cal value	Test method	
Specific gravity		1.14		-	
Flame classification		-		-	

(*) Seen notes.

Notes

Properties reported here are average of a typical batch. The 3D printed tensile bars were printed in the XY plane, using the normal quality profile in Cura 2.1, an UM2+, a 0.4 mm nozzle, 90% infill, 250 °C nozzle temperature and 60 °C build plate temperature. The values are the average of 5 transparent and 5 black tensile bars. Ultimaker is constantly working on extending the TDS data.

Disclaimer

Any technical information or assistance provided herein is given and accepted at your risk, and neither the Ultimaker or its affiliates make any warranty relating to it or because of it. Neither Ultimaker nor its affiliates shall be responsible for the use of this information, or of any product, method or apparatus mentioned, and you must make your own determination of its suitability and completeness of your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability or fitness of any product; and nothing herein waives any of Ultimaker's conditions of sale. Specifications are subject to change without notice.

<u>Version</u>

Version 3.004

<u>Date</u>

21/10/2016

